

[image: _images/logo.png]

cronus is a Python tool designed to facilitate Markov Chain Monte Carlo (MCMC) and Nested Sampling (NS)
in large supercomputing clusters.

It relies on the powerful MCMC sampler zeus to do the heavy-lifting and incorporates various MPI features
along with a suite of automated Convergence Diagnostics.

cronus is designed to be used via the terminal using parameter files and it is particularly suited for
Astrophysical and Cosmological applications.

Getting Started

	See the Installation page for instruction on how to easily install cronus.

	See the Quick Start page for a simple example.

	See the Advanced Use page for more information about the ways cronus can be configured.

	See the FAQ page for frequently asked questions.

	See the Troubleshooting page for any problems with cronus.

	See the API page for a detailed API documentation.

Attribution

	Please cite X if you find this code useful in your research.

Licence

Copyright 2020 Minas Karamanis and contributors.

cronus is free software made available under the GPL-3.0 License.

Changelog

1.0.0 (07/09/20)

	First public release.

Installation

Requirements

cronus is compatible with Python 3.6+. It requires numpy, scipy, mpi4py, ìminuit, h5py and zeus to run.
If you want to use cronus with either emcee or dynesty please make sure that you have
those installed too.

You can find information about how to install mpi4py and its prerequisites at https://mpi4py.readthedocs.io/en/stable/install.html

Install using pip

We recommend to use pip to install the latest stable version of cronus:

pip install cronus-mcmc

Install from source

Alternatively, install the latest version of cronus from source:

git clone https://github.com/minaskar/cronus.git
cd cronus
pip install -r requirements.txt
pip install .

Making sure that cronus is installed properly

If everything went well, you should be able to import cronus in Python from anywhere in your directory structure:

$ python -c "import cronus"

If you get an error message, something went wrong. Check twice the instructions above, try again, or contact us.

cronus also installs some shell scripts. If everything went well, if you try to run in the shell cronus-run, you
should get a message asking you for an input file, instead of a command not found error.

Note

If you do get a command not found error, this means that the folder where your local scripts are installed has not
been added to your path.

To solve this on unix-based machines, look for the cronus-run script from your home and scratch folders with:

$ find `pwd` -iname cronus-run -printf %h\\n

in Linux, or:

$ which -a cronus-run

in Mac OS X.

This should print the location of the script, e.g. /home/you/.local/bin. Add:

$ export PATH="/home/you/.local/bin":$PATH

at the end of your ~/.bashrc file, and restart the terminal or do source ~/.bashrc. Alternatively, simply
add that line to your cluster jobscripts just before calling cronus-run.

Quick Start

Overview

The main purpose of cronus is to facilitate large-scale Bayesian Inference (e.g. MCMC or NS) in modern
super-computing environments. cronus utilises MPI to efficiently distribute the tasks to multiple
nodes. Another important feature of cronus is its integrated and automated suite of Convergence Diagnostics.

Before we go into detail about how to use cronus let us first discuss the way it works in a higher level.
cronus accepts as an input a parameter file that specifies the following:

	The Python file that contains the definition of the Log Likelihood function,

	A set of priors and/or fixed values for the different parameters of the model that enters the Log Likelihood function.

Note

The Paremeter file can also be used to specify some additional optional information, like:

	A set of parameters that configure the MCMC/NS sampler (e.g. number of walkers), those are usually trivial to define.

	A few threshold values for the Convergence Diagnostics,

	The path/directory for the results to be saved in.

For more information about this please read the Advanced Use page.

Once a parameter file is provided, cronus efficiently distributes the sampling tasks to all available CPUs and runs
until Convergence is reached. The results are saved iteratively so that the researcher can monitor the progress.

[image: _images/flow.png]

Let us present here a simple example that will help illustrate the basic features and capabilities of cronus.

Log Likelihood Function

The first thing we need to do is to create a Python file in which we define the Log Likelihood function. There is
no real restricton to this. The model itself can be computed in any programming language (e.g. C, C++, Fortran) and
the Log Likelihood can be a Python wrapper for this. In this example we will define a strongly-correlated
5-dimensional Normal distribution.

import os
os.environ["OMP_NUM_THREADS"] = "1"

import numpy as np

ndim = 5

C = np.identity(ndim)
C[C==0] = 0.95
Cinv = np.linalg.inv(C)

def log_likelihood(x):
 return - 0.5 * np.dot(x, np.dot(Cinv, x))

We then save the file as logprob.py.

Note

The important thing to note here is that the function accepts a single argument x. If your Log Likelihood
requires more than one argument (e.g. data, covariance, etc.) we recommend to make those global like we did with
the ivar array in the aforementioned example.

Note

Some builds of NumPy (including the version included with Anaconda) will automatically parallelize some
operations using something like the MKL linear algebra. This can cause problems when used with the
parallelization methods described here so it can be good to turn that off (by setting the environment
variable OMP_NUM_THREADS=1, for example).

import os
os.environ["OMP_NUM_THREADS"] = "1"

Parameter File

The next step is to create the parameter file that we will call file.yaml:

Likelihood:
 path: logprob.py
 function: log_likelihood

Parameters:
 a:
 prior:
 type: uniform
 min: -10.0
 max: 10.0
 b:
 fixed: 1.0
 c:
 prior:
 type: normal
 loc: 1.0
 scale: 1.0
 d:
 prior:
 type: normal
 loc: 0.0
 scale: 2.5
 e:
 prior:
 type: normal
 loc: -0.5
 scale: 1.0

You can see the following sections in the parameter file:

	The Likelihood section which includes information about the path of the Log Likelihood function
(i.e. both the directory/filename and the name of the function).

	The Parameters section which includes the priors of fixed values for each parameter of the model.

For more information about these and additional options in the parameter file please see the Advanced Use page.

Run cronus

To run this example go the directory where you saved file.yaml and do:

$ mpiexec -n 8 cronus-run file.yaml

Here we used 8 CPUs.

Results

After a few seconds, an output directory will be created containing the following files:

chains/run1
 ├── chain_0.h5
 ├── chain_1.h5
 ├── IAT_0.dat
 ├── IAT_1.dat
 ├── GelmanRubin.dat
 ├── MAP.npy
 ├── hessian.npy
 ├── para.yaml
 ├── results.dat
 └── varnames.dat

All but the results.dat file will be created shortly. The files will iteratively be updated every few iterations.
Once the sampling is done, the results.dat file will be added to the list.

Let’s have a look at what each of those files contains:

	The chain_x.h5 files contain the actual MCMC samples.

	The IAT_x.dat files contain the estimated Integrated Autocorrelation Time (IAT) for each and parameter.
This is a measure of how independent the chain samples are (i.e. the lower the IAT the better).

	The GelmanRubin.dat file contains the Gelman-Rubin R_hat diagnostic for each parameter.

	The MAP.npy file contains the Maximum a Posteriori (MAP) estimate.

	The hessian.npy file contains the Hessian matrix evaluated at the MAP.

	The para.yaml file is a copy of the original parameter file with some extra information explicitly described.

	The results.dat file includes a summary of the results (e.g. mean, std, 1-sigma, 2-sigma, etc.).

	The varnames.dat file contains a list of the parameter names.

Note

If we can open the results.dat file using a text editor we will see the following:

| Name | MAP | mean | median | std | -1 sigma | +1 sigma | -2 sigma | +2 sigma | IAT | ESS | R_hat |
|--------+----------+----------+----------+----------+------------+------------+------------+------------+---------+---------+---------|
a	0.885898	0.881579	0.879316	0.304584	-0.301652	0.308398	-0.609184	0.609584	6.82365	4044.76	1
c	0.891147	0.879663	0.881513	0.298963	-0.301561	0.293607	-0.603484	0.59629	6.87625	4013.82	1.0003
d	0.878582	0.880138	0.881647	0.307091	-0.311894	0.302304	-0.617898	0.611955	6.814	4050.48	1.0006
e	0.818762	0.807181	0.807153	0.297321	-0.29532	0.294845	-0.593549	0.597654	6.5086	4240.54	1.0002

Now let’s see how we can easily access this information using cronus.

The first thing we want to do is read the chains using the read_chains module of cronus:

import cronus

results = cronus.read_chains('chains/run1')

print(results.Summary)

This will print the contents of the results.dat file.

We can easily create some plots by running:

cronus.traceplot(results)

to get the following traceplot:

[image: _images/traceplot.png]

Or, run the following to get a cornerplot:

fig, axes = cronus.cornerplot(results.trace, labels=results.varnames)

[image: _images/cornerplot.png]

Advanced Use

Log Likelihood Function

The Log Likelihood function needs to be defined in a separate .py file. It should be a function of one argument,
either a numpy array or a dictionary.

If you need to pass more information (e.g. data, covariance matrix, precision matrix, etc.) to the Log Likelihood function
you should declare those as global variables. This is the easiest and most consistent way to make MPI not complain; it’s also
the most computationally efficient method (i.e. passing the whole dataset to all processes eveytime you call the function can
be slow).

Here we show a short toy example where we demonstrate how we should define such a function.

import numpy as np

ndim = 10

data = np.random.randn(ndim) # Random data vector
C = np.identity(ndim) # Identity Covariance Matrix
Cinv = np.linalg.inv(C) # Inverse Covariance Matrix

def log_likelihood(x): # Normal distribution
 return -0.5*np.dot(x, np.dot(Cinv, x))

Parameter File

The parameter file can generally include more information than the options presented in the Quick Start page.

Likelihood

Usually the argument of the Log Likelihood function is a 1D numpy array but we can also use a dictionary instead.
To do so we need to add the dictionary: True option to the Likelihood block, for instance:

Likelihood:
 path: path/to/logprob.py
 function: log_likelihood
 dictionary: True

Parameters

Every parameter needs to be either fixed or free:

	For fixed parameters we need to specify their value in Parameter block (i.e. parameter a in the following example).

	For free parameters we need to specify a prior instead. So far, only uniform and normal priors are supported.
For a uniform prior we need to specify the uniform interval (min, max) (i.e. parameter b in the following
example). For a normal prior we need to specify the mean loc and standard deviation scale (i.e. parameter
c in the following example).

Parameters:
 a:
 fixed: 1.0
 b:
 prior:
 type: uniform
 min: -1.0
 max: 1.0
 c:
 prior:
 type: normal
 loc: 0.0
 scale: 1.0

Sampler

cronus supports three different samplers, zeus (Default), emcee, and dynesty. The prefered sampler can be specified
using the name option in the Sampler section of the parameter file, for instance:

Sampler:
 name: zeus
 ...

When either zeus or emcee is used as the prefered sampler then the following options are available:

	ndim is the total number of parameters/dimensions.

	nwalkers is the total number of walkers (i.e. internal parallel chains for zeus or emcee). This number needs to
be at least twice the number of free parameters.

	nchains is the number of parallel chains, we recommend at least two and preferably 4 to get good estimate of the
Gelman-Rubin diagnostic.

	ncheck specifies the number of steps after which the samples are saved and the Convergence Criteria are assessed.
The default value is 100 which means that the samples are saved and convergence is diagnosed every 100 steps.

	maxiter specifies the maximum number of iterations (Default is inf).

	miniter specifies the minimum number of iterations (Default is 0).

	maxcall specifies the maximum number of Log Likelihood evalluations/calls (Default is inf).

	initial controls the initialization of the walker positions. The available options are: ellipse (this is a small
ellipse around the Maximum a posteriori estimate, this is the default and recommended choice), laplace (sample the
initial positions of the walkers from the Laplace approximation of the posterior distribution), and prior (sample
the initial positions from the prior distribution, not the best choice).

	thin is the thinning rate for the chains (i.e. if thin=5 then save every 5th element to the chain). This can
significantly reduce the size of the output files if the autocorrelation time of the chain is large. The default value is 1.

When dynesty is used as the prefered sampler then the following options are available:

	ndim is the total number of parameters/dimensions.

	bound

	dlogz

	maxiter specifies the maximum number of iterations (Default is inf).

	maxcall specifies the maximum number of Log Likelihood evalluations/calls (Default is inf).

	pfrac

Diagnostics

So far cronus includes two distinct convergence diagnostics, the Gelman-Rubin statistic and the Autocorrelation Time test.
Their combination seems to work well in Astrophysical and Cosmological likelihoods.

Lets see how one can customize the thresholds of those criteria:

	Either of them can be turned off or on (Default) using the use argument.

	|R_hat - 1| < epsilon is the threshold for the Potential Scale Reduction Factor (PSRF). We recommend to use a
value of epsilon that it is smaller than 0.05 (Default).

	In terms of the Integrated Autocorrelation Time (IAT) we provide two criteria, if the chain is longer than nact = 20
(Default) times the estimated IAT and the IAT has changed less than dact = 3% (Default) the criteria are satisfied. If both
Gelman-Rubin and IAT criteria are satisfied then sampling stops.

All of the diagnostic options can be seen here:

Diagnostics:
 Gelman-Rubin:
 use: True
 epsilon: 0.05
 Autocorrelation:
 use: True
 nact: 20
 dact: 0.03

Output

The only option of the Output block is a directory path in which the samples/results will be saved. If
the provided directory doesn’t exist one will be created by cronus. The default directory is the current one.

Output: path/to/output/folder/chains

Running cronus

To run cronus, given a parameter file file.yaml, we execute the following command:

$ mpiexec -n [nprocesses] cronus-run file.yaml

where, nprocesses is the number of available CPUs. Depending on the cluster you are using you may need to use
mpirun or srun instead of mpiexec.

Note

For better performance we recommend to use a number of processes that can be divided by the number of chains nchains.
Ideally, we recommend to use nchains * (nwalkers/2 + 1) if available, there’s no real computational benefit in using
more than this.

Results

zeus or emcee

When either zeus or emcee is used as the prefered sampler then the results are saved as h5 files.
There are as many h5 files saved as the number of chains nchains. Each file contains two datasets, one
called samples which constists of the samples as the name suggests, and one named logprob which includes
the respective values of the Log Posterior Distribution.

After a few seconds of running the following files will be created in the provided Output directory:

chains
 ├── chain_0.h5
 ├── chain_1.h5
 ├── ...
 └── chain_[nchains].h5

The files will iteratively be updated every few iterations.

Note

You can access those results by doing:

import numpy as np
import h5py

with h5py.File('chains/chain_0.h5', "r") as hf:
 samples = np.copy(hf['samples'])
 logprob = np.copy(hf['logprob'])

The shape of the samples array would be (Iteration, nwalkers, ndim) and the shape of the Log Posterior array will
be (Iteration, nwalkers). You can easily flatten this, combining all the walkers into one chain and discarding
the first half of the chain, by running:

nsamples, nwalkers, ndim_prime = np.shape(samples)

samples_flat = samples[nsamples//2:].reshape(-1, ndim_prime)

logprob_flat = logprob[nsamples//2:].reshape(-1, 1)

dynesty

When dynesty is used as the sampler then the results are saved as a numpy npy format file.

FAQ

What if the Log Likelihood requires more than one argument?

.

Troubleshooting

infiniband

There seem to be some issues with some mpi4py features when used in a computing cluster with infiniband.
This leads to cronus to hang in an ìnfiniband multi-node setting.

OpenMPI

If you are using OpenMPI you can try including the following command which in your jobscript.

export OMPI_MCA_pml=ob1

This should disable the infiniband interface.

Intel MPI

The mpi4py package is using matching probes (MPI_Mpobe) for the receiving function recv() instead of regular
MPI_Recv operations per default. These matching probes from the MPI 3.0 standard however are not supported
for all fabrics, which may lead to a hang in the receiving function.

Therefore, users are recommended to leverage the OFI fabric instead of TMI for Omni-Path systems. For the
Intel MPI Library, the configuration could look like the following environment variable setting:

export I_MPI_FABRICS=ofi

API

Results Module

Plotting Module

Index

 _static/ajax-loader.gif

_images/logo.png

_images/traceplot.png
0 200

400

600

800

1000

2.5

0 200

400

600

800

1000

0 200

400

600

800

1000

0 200

400

600

800

1000

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/cornerplot.png
a=0.88%38

o N c =0.88%323
\/c‘b_
o
Q.
Q° | : : : i . . . - d = O-88t82§_)
N |
@
Q.
© - o yo o N e = 0.81+0%9
\/c‘b_
o
N.
1
Q.
o
Q.
Q. Q. N,:L x. Q. Q. N,:L x. Q~ Q~ N’)’ x. Q~ Q~ N’)’ x.
a C d e

_images/flow.png
Log Likelihood
(e.g. Python
function)

Parameter File
(e.g. file.yaml)

Results
(e.g. Chains,

Statistics,
Diagnostics)

_static/file.png

nav.xhtml

 Table of Contents

 		
 Getting Started

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

